Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.804
Filtrar
1.
Biochem Biophys Res Commun ; 704: 149723, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38430698

RESUMO

Subclinical hyperthyroidism is defined biochemically as a low or undetectable thyroid-stimulating hormone (TSH) with normal thyroid hormone levels. Low TSHR signaling is considered to associate with cognitive impairment. However, the underlying molecular mechanism by which TSHR signaling modulates memory is poorly understood. In this study, we found that Tshr-deficient in the hippocampal neurons impairs the learning and memory abilities of mice, accompanying by a decline in the number of newborn neurons. Notably, Tshr ablation in the hippocampus decreases the expression of Wnt5a, thereby inactivating the ß-catenin signaling pathway to reduce the neurogenesis. Conversely, activating of the Wnt/ß-catenin pathway by the agonist SKL2001 results in an increase in hippocampal neurogenesis, resulting in the amelioration in the deficits of memory caused by Tshr deletion. Understanding how TSHR signaling in the hippocampus regulates memory provides insights into subclinical hyperthyroidism affecting cognitive function and will suggest ways to rationally design interventions for neurocognitive disorders.


Assuntos
Hipertireoidismo , beta Catenina , Camundongos , Animais , beta Catenina/metabolismo , Receptores da Tireotropina/genética , Receptores da Tireotropina/metabolismo , Via de Sinalização Wnt/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Hipocampo/metabolismo , Neurogênese/fisiologia , Hipertireoidismo/metabolismo
2.
Neuroendocrinology ; 114(4): 400-410, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38171345

RESUMO

INTRODUCTION: Thyroid hormones, which produce critical changes in our bodies even when their physiological levels alter slightly, are crucial hormones that influence gene transcription. Neuronal plasticity, on the other hand, requires both the activation of local proteins as well as protein translation and transcription in response to external signals. So far, no study has examined metaplastic long-term potentiation (LTP) and related gene expression levels in a hyperthyroid experimental model. METHODS: The Wistar male rats were administered 0.2 mg/kg/day of l-thyroxine for 21 days to induce hyperthyroidism. Perforant path was primed with 1-Hz low-frequency stimuli (LFS) for 900 s to investigate metaplasticity responses. The LFS was followed by high-frequency stimuli (HFS, 100 Hz) after 5 min. Excitatory postsynaptic potential (EPSP) slope and population spike (PS) amplitude were recorded from the granule cell layer of the dentate gyrus. The mRNA levels of genes related to neurodegeneration (Gsk-3ß, Cdk5, Akt1, Mapt, p35, Capn1, Bace1, and Psen2) were measured using the RT-PCR method for the stimulated hippocampus. RESULTS: Similar to euthyroid rats, hyperthyroid animals had a lower EPSP slope and PS after LFS. Depression of EPSP prevented subsequently induced EPSP-LTP, although HFS was able to elicit PS-LTP despite depression of PS amplitude in both groups. Despite similarities in metaplastic LTP responses, these electrophysiological findings were accompanied by increased Akt, Bace1, Cdk5, and p35-mRNA expressions and decreased Gsk-3ß mRNA expression in hyperthyroid rats' hippocampus. CONCLUSION: These data support the view that in thyroid hormone excess, the mechanism that keeps synaptic efficacy within a dynamic range occurs concurrently with increased mRNA expression of neurodegeneration-related genes. Our study encourages further examination of the increased risk of neurodegenerative disease in hyperthyroidism.


Assuntos
Hipertireoidismo , Doenças Neurodegenerativas , Ratos , Masculino , Animais , Ratos Wistar , Secretases da Proteína Precursora do Amiloide/efeitos adversos , Secretases da Proteína Precursora do Amiloide/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Regulação para Cima , Doenças Neurodegenerativas/metabolismo , Ácido Aspártico Endopeptidases/efeitos adversos , Ácido Aspártico Endopeptidases/metabolismo , Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Hipertireoidismo/induzido quimicamente , Hipertireoidismo/metabolismo , RNA Mensageiro/metabolismo , Expressão Gênica , Giro Denteado/metabolismo
3.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069053

RESUMO

The effect of uridine (30 mg/kg for 7 days; intraperitoneally) on the functions of liver mitochondria in rats with experimentally induced hyperthyroidism (HT) (200 µg/100 g for 7 days, intraperitoneally) is studied in this paper. An excess of thyroid hormones (THs) led to an intensification of energy metabolism, the development of oxidative stress, a significant increase in the biogenesis, and changes in the content of proteins responsible for the fusion and fission of mitochondria. The injection of uridine did not change the concentration of THs in the blood of hyperthyroid rats (HRs) but normalized their body weight. The exposure to uridine improved the parameters of oxidative phosphorylation and corrected the activity of some complexes of the electron transport chain (ETC) in the liver mitochondria of HRs. The analysis of ETC complexes showed that the level of CI-CV did not change by the action of uridine in rats with the condition of HT. The application of uridine caused a significant increase in the activity of superoxide dismutase and lowered the rate of hydrogen peroxide production. It was found that uridine affected mitochondrial biogenesis by increasing the expression of the genes Ppargc1a and NRF1 and diminishing the expression of the Parkin gene responsible for mitophagy compared with the control animals. In addition, the mRNA level of the OPA1 gene was restored, which may indicate an improvement in the ETC activity and oxidative phosphorylation in the mitochondria of HR. As a whole, the results obtained demonstrate that uridine has a protective effect against HT-mediated functional disorders in the metabolism of rat liver mitochondria.


Assuntos
Hipertireoidismo , Mitocôndrias Hepáticas , Ratos , Animais , Mitocôndrias Hepáticas/metabolismo , Uridina/farmacologia , Uridina/metabolismo , Mitocôndrias/metabolismo , Hipertireoidismo/tratamento farmacológico , Hipertireoidismo/metabolismo , Estresse Oxidativo
4.
Front Endocrinol (Lausanne) ; 14: 1202560, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37476491

RESUMO

Background: Male infertility is a multifaceted issue that has gained scientific interest due to its increasing rate. Studies have demonstrated that oxidative stress is involved in male infertility development. Furthermore, metabolic disorders, including obesity, diabetes, hypo- and hyperthyroidism, are risk factors for male infertility, and oxidative stress is believed to contribute to this association. Melatonin, functioning as an oxidative scavenger, may represent a promising therapeutic approach for the prevention and treatment of metabolic disorder-associated male infertility. Material and methods: We systematically searched three online databases (PubMed, Scopus, and Web of Science) for studies that evaluated the effects of melatonin therapy on metabolic disorders-induce infertility in male rodents. The favorable outcomes were histopathological parameters of testicular tissue, reproductive hormones, and markers of oxidative stress. Then, meta-analyses were done for each outcome. The results are reported as standardized mean difference (Cohen's d) and 95% confidence interval. Results: 24 studies with 31 outcomes were included. Rats and mice were the subjects. Studies have employed obesity, diabetes, hypothyroidism, hyperthyroidism, hyperlipidemia, and food deprivation as metabolic disorders. To induce these disorders, a high-fat diet, high-fructose diet, leptin, streptozotocin, alloxan, carbimazole, and levothyroxine were used. The outcomes included histopathologic characteristics (abnormal sperm morphology, apoptotic cells, apoptotic index, Johnsen's testicular biopsy score, seminiferous epithelial height, tubular basement membrane thickness, tubular diameter, sperm count, and motility), weight-related measurements (absolute epididymis, testis, and body weight, body weight gain, epididymal adipose tissue weight, and relative testis to body weight), hormonal characteristics (androgen receptor expression, serum FSH, LH, and testosterone level), markers of oxidative stress (tissue and serum GPx and MDA activity, tissue CAT, GSH, and SOD activity), and exploratory outcomes (serum HDL, LDL, total cholesterol, triglyceride, and blood glucose level). The overall pooled effect sizes were statistically significant for all histopathological characteristics and some markers of oxidative stress. Conclusions: Melatonin can reduce damage to male rodents' gonadal tissue and improve sperm count, motility, and morphology in metabolic diseases. Future clinical studies and randomized controlled trials are needed to evaluate the safety and effectiveness of melatonin for male infertility in patients with metabolic diseases.


Assuntos
Diabetes Mellitus , Hipertireoidismo , Infertilidade Masculina , Melatonina , Doenças Metabólicas , Animais , Masculino , Camundongos , Ratos , Peso Corporal , Diabetes Mellitus/metabolismo , Hipertireoidismo/metabolismo , Infertilidade Masculina/tratamento farmacológico , Infertilidade Masculina/etiologia , Infertilidade Masculina/prevenção & controle , Melatonina/farmacologia , Melatonina/uso terapêutico , Melatonina/metabolismo , Doenças Metabólicas/etiologia , Doenças Metabólicas/complicações , Obesidade/complicações , Obesidade/tratamento farmacológico , Estresse Oxidativo , Roedores , Sêmen , Testículo/metabolismo
5.
Physiol Res ; 72(S1): S37-S45, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294117

RESUMO

Our and other studies suggest that myocardial hypertrophy in response to hypertension and hyperthyroidism increases propensity of the heart to malignant arrhythmias, while these are rare in conditions of hypothyroidism or type-1 diabetes mellitus associated with myocardial atrophy. One of the crucial factors impacting the susceptibility of the heart to life-threatening arrhythmias is gap junction channel protein connexin-43 (Cx43), which ensure cell-to-cell coupling for electrical signal propagation. Therefore, we aimed to explore Cx43 protein abundance and its topology in hypertrophic and hypotrophic cardiac phenotype. Analysis were performed in left ventricular tissue of adult male spontaneously hypertensive rat (SHR), Wistar Kyoto rats treated for 8-weeks with L-thyroxine, methimazol or strepotozotocin to induce hyperthyroid, hypothyroid and type-1 diabetic status as well as non-treated animals. Results showed that comparing to healthy rats there was a decrease of total myocardial Cx43 and its variant phosphorylated at serine368 in SHR and hyperthyroid rats. Besides, enhanced localization of Cx43 was demonstrated on lateral sides of hypertrophied cardiomyocytes. In contrast, total Cx43 protein and its serine368 variant were increased in atrophied left ventricle of hypothyroid and type-1 diabetic rats. It was associated with less pronounced alterations in Cx43 topology. In parallel, the abundance of PKCepsilon, which phosphorylates Cx43 at serine368 that stabilize Cx43 function and distribution was reduced in hypertrophied heart while enhanced in atrophied once. Findings suggest that differences in the abundance of cardiac Cx43, its variant phosphorylated at serine368 and Cx43 topology may explain, in part, distinct propensity of hypertrophied and atrophied heart to malignant arrhythmias.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Hipertireoidismo , Hipotireoidismo , Ratos , Masculino , Animais , Conexina 43/metabolismo , Projetos Piloto , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Experimental/metabolismo , Miocárdio/metabolismo , Arritmias Cardíacas/patologia , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Conexinas , Hipertrofia/metabolismo , Hipotireoidismo/metabolismo , Hipertireoidismo/complicações , Hipertireoidismo/metabolismo , Atrofia/patologia
6.
Crit Rev Eukaryot Gene Expr ; 33(5): 17-27, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37199311

RESUMO

Excess thyroid hormone secretion can cause endocrine metabolic disorders, which can lead to cardiovascular diseases, including heart enlargement, atrial fibrillation (AF), and heart failure. The present study investigated the molecular mechanisms of hyperthyroidism-induced AF. A rabbit susceptibility model of hyperthyroidism-induced AF was constructed, and metoprolol treatment was administered. Norepinephrine levels were determined using enzyme-linked immunosorbent assay; quantitative reverse transcription polymerase chain reaction and immunohistochemistry were used to detect the expression of markers for sympathetic remodeling (growth associated protein 43 and tyrosine hydroxylase in atrial myocardial tissues and stellate ganglia). Primary rabbit cardiomyocytes were cultured and identified by immunofluorescence staining, and terminal deoxynucleotidyl transferase dUTP nick end labeling staining was used to measure cardiomyocyte apoptosis; western blot was used to detect the expression of apoptosis-related proteins, including Bax, Bcl-2, and cleaved caspase-3, as well as to measure the phosphorylation states of p38 mitogen-activated protein kinase (MAPK) pathway proteins. Metoprolol inhibited sympathetic activation and cardiomyocyte apoptosis in the rabbit model by inhibiting the p38 MAPK signaling pathway. Immunofluorescence staining results revealed that the rabbit cardiomyocytes were isolated successfully. Inhibition of p38 MAPK signaling alleviated norepinephrine-induced apoptosis in cardiomyocytes. Sympathetic activation promotes apoptosis in cardiomyocytes with hyperthyroidism-induced AF via the p38 MAPK signaling pathway. The results of the present study provide a novel theoretical basis for the potential clinical treatment of patients with hyperthyroidism and AF.


Assuntos
Fibrilação Atrial , Hipertireoidismo , Animais , Coelhos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Miócitos Cardíacos/metabolismo , Fibrilação Atrial/etiologia , Fibrilação Atrial/metabolismo , Metoprolol/farmacologia , Metoprolol/metabolismo , Apoptose , Transdução de Sinais , Norepinefrina/farmacologia , Norepinefrina/metabolismo , Hipertireoidismo/complicações , Hipertireoidismo/metabolismo
7.
Neurobiol Aging ; 128: 74-84, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37229849

RESUMO

Mouse models of hyper- and hypothyroidism were used to examine the effects of thyroid hormone (TH) dyshomeostasis on the aging mammalian brain. 13-14 month-old mice were treated for 4months with either levothyroxine (hyperthyroid) or a propylthiouracil and methimazole combination (PTU/Met; hypothyroid). Hyperthyroid mice performed better on Morris Water Maze than control mice, while hypothyroid mice performed worse. Brain weight was increased in thyroxine-treated, and decreased in PTU/Met-treated animals. The brain weight change was strongly correlated with circulating and tissue T4. Quantitative measurements of microvessels were compared using digital neuropathologic methods. There was an increase in microvessel area in hyperthyroid mice. Hypothyroid mice showed a trend for elevated glial fibrillary acidic protein-immunoreactive astrocytes, indicating an increase in neuroinflammation. Gene expression alterations were associated with TH perturbation and astrocyte-expressed transcripts were particularly affected. For example, expression of Gli2 and Gli3, mediators in the Sonic Hedgehog signaling pathway, were strongly impacted by both treatments. We conclude that TH perturbations produce robust neurobehavioral, pathological, and brain gene expression changes in aging mouse models.


Assuntos
Hipertireoidismo , Hipotireoidismo , Camundongos , Animais , Proteínas Hedgehog/metabolismo , Hormônios Tireóideos/metabolismo , Hipotireoidismo/genética , Tiroxina , Hipertireoidismo/metabolismo , Expressão Gênica , Encéfalo/metabolismo , Mamíferos/metabolismo
8.
Acta Histochem ; 125(3): 152026, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37058857

RESUMO

Decidual immunological mediators modulate placental formation, decidualization and fetal development. However, the effect of maternal hyperthyroidism on decidual immunology needs further research. The aim of this study was to evaluate the population of uterine natural killer cells (uNKs) and the expression of immunological mediators in the decidua of female rats throughout pregnancy. Wistar rats were used and hyperthyroidism was induced by daily administration of L-thyroxine (T4) throughout pregnancy. The population of uNK cells in decidua was evaluated by immunostaining Lectin DBA, as well as the expression of interferon γ (INFγ), macrophage migration inhibitory factor (MIF), interleukin 15 (IL-15) and inducible nitric oxide synthase (iNOS) at 7, 10, 12, 14 and 19 days of gestation (DG). Maternal hyperthyroidism reduced the DBA+ uNK cell population in the decidua at 7 (P < 0.05) and 10 (P < 0.01) DGs compared to that in the control group, while it increased in the basal decidua (P < 0.05) and metrial gland (P < 0.0001) at the 12th DG. Hyperthyroidism also increased immunostaining of IL-15 (P < 0.0001), INFγ (P < 0.05), and MIF (P < 0.05) in the 7th DG, and increased immunostaining of IL-15 (P < 0.0001) and MIF (P < 0.01) in the 10th DG. However, excess thyroxine reduced IL-15 expression in the metrial gland and/or basal decidua in the 12th (P < 0.05), 14th (P < 0.01), and 19th (P < 0.001) DGs, as was also observed for INFγ in the basal decidua (P<0.001) and metrial gland (P < 0.0001) in the 12th DG. Regarding iNOS, an antiinflammatory cytokine, lower expression was observed in the basal decidua of hyperthyroid animals at 7 and 12 DGs (P < 0.05), whereas an increase occurred in the 10th DG (P < 0.05). These data demonstrate that maternal hyperthyroidism in female rats, particularly between 7 and 10 DGs, reduces the population of DBA+ uNKs in the decidua and increases the expression of inflammatory cytokines, suggesting a more proinflammatory environment in early pregnancy caused by this gestational disease.


Assuntos
Hipertireoidismo , Placenta , Ratos , Gravidez , Feminino , Animais , Placenta/metabolismo , Decídua/metabolismo , Interleucina-15/metabolismo , Interleucina-15/farmacologia , Ratos Wistar , Células Matadoras Naturais/metabolismo , Hipertireoidismo/metabolismo
9.
Cells ; 12(3)2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36766738

RESUMO

This work investigated the effect of thyroxine on the biogenesis and quality control system in rat heart mitochondria. In hyperthyroid rats, the concentrations of free triiodothyronine and thyroxine increased severalfold, indicating the development of hyperthyroidism in these animals. The electron microscopy showed 58% of cardiac mitochondria to be in a swollen state. Some organelles were damaged and had a reduced number of cristae. Multilamellar bodies formed from cristae/membranes were found in the vacuolated part of the mitochondria. The hyperthyroidism caused no changes to mitochondrial biogenesis in the investigated animals. At the same time, the levels of mitochondrial dynamics proteins OPA1 and Drp1 increased in the hyperthyroid rats. The administration of thyroxine to the animals led to a decrease in the amount of PINK1 and Parkin in heart tissue. The data suggest that excess thyroid hormones lead to changes in mitochondrial dynamics and impair Parkin-dependent mitophagy in hyperthyroid rat heart.


Assuntos
Hipertireoidismo , Mitofagia , Animais , Ratos , Hipertireoidismo/metabolismo , Mitocôndrias Cardíacas/metabolismo , Proteínas Mitocondriais/metabolismo , Tiroxina/farmacologia , Ubiquitina-Proteína Ligases/metabolismo
10.
Reproduction ; 165(3): 235-248, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36488195

RESUMO

In brief: The endocrine and immunological disruption induced by hyperthyroidism could alter gestation, placenta, and fetal development. This study suggests an immunological role of thyroid hormones in gestation. Abstract: Thyroid dysfunctions lead to metabolic, angiogenic, and developmental alterations at the maternal-fetal interface that cause reproductive complications. Thyroid hormones (THs) act through their nuclear receptors that interact with other steroid hormone receptors. Currently, immunological regulation by thyroid status has been characterized to a far less extent. It is well known that THs exert regulatory function on immune cells and modulate cytokine expression, but how hyperthyroidism (hyper) modulates placental immunological aspects leading to placental alterations is unknown. This work aims to throw light on how hyper modulates immunological and morphological placental aspects. Control and hyper (induced by a daily s.c. injection of T4 0.25 mg/kg) Wistar rats were mated 8 days after starting T4 treatment and euthanized on days 19 (G19) and 20 (G20) of pregnancy. We removed the placenta to perform qPCR, flow cytometry, immunohistochemistry, Western blot and histological analysis, and amniotic fluid and serum to evaluate hormone levels. We observed that hyper increases the fetal number, fetal weight, and placental weight on G19. Moreover, hyper induced an endocrine imbalance with higher serum corticosterone and changed placental morphology, specifically the basal zone and decidua. These changes were accompanied by an increased mRNA expression of glucocorticoid receptor and monocyte chemoattractant protein-1, an increased mRNA and protein expression of prolactin receptor, and an increase in CD45+ infiltration. Finally, by in vitro assays, we evidenced that TH induced immune cell activation. In summary, we demonstrated that hyper modulates immunological and morphological placental aspects and induces fetal phenotypic changes, which could be related to preterm labor observed in hyper.


Assuntos
Hipertireoidismo , Placenta , Ratos , Animais , Gravidez , Feminino , Placenta/metabolismo , Ratos Wistar , Hormônios Tireóideos/metabolismo , Hipertireoidismo/metabolismo , Hipertireoidismo/patologia , RNA Mensageiro/metabolismo , Leucócitos/metabolismo
11.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362133

RESUMO

Hypothyroidism has been shown to reduce infarct size in rats, but the underlying mechanisms are unclear. We used isolated pressure-constant perfused hearts of control, hypothyroid and hyperthyroid mice and measured infarct size, functional parameters and phosphorylation of key molecules in cardioprotective signaling with matched heart rate. Compared with controls, hypothyroidism was cardioprotective, while hyperthyroidism was detrimental with enlarged infarct size. Next, we asked how thyroid hormone receptor α (TRα) affects ischemia/reperfusion (IR) injury. Thus, canonical and noncanonical TRα signaling was investigated in the hearts of (i) mice lacking TRα (TRα0), (ii) with a mutation in TRα DNA-binding domain (TRαGS) and (iii) in hyperthyroid TRα0 (TRα0hyper) and TRαGS mice (TRαGShyper). TRα0 mouse hearts were protected against IR injury. Furthermore, infarct size was reduced in the hearts of TRαGS mice that lack canonical TRα signaling but maintain noncanonical TRα action. Hyperthyroidism did not increase infarct size in TRα0 and TRαGS mouse hearts. These cardioprotective effects were not associated with increased phosphorylation of key proteins of RISK, SAFE and eNOS pathways. In summary, chronic hypothyroidism and the lack of canonical TRα signaling are cardioprotective in IR injury and protection is not due to favorable changes in hemodynamics.


Assuntos
Hipertireoidismo , Hipotireoidismo , Traumatismo por Reperfusão , Ratos , Camundongos , Animais , Hipotireoidismo/metabolismo , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Hipertireoidismo/metabolismo , Hemodinâmica , Traumatismo por Reperfusão/metabolismo , Infarto , Miocárdio/metabolismo
12.
Front Endocrinol (Lausanne) ; 13: 1050201, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36440210

RESUMO

Background: Hyperthyroidism is characterized by increased thyroid hormone production, which impacts various processes, including metabolism and energy expenditure. Yet, the underlying mechanism and subsequent influence of these changes are unknown. Metabolomics is a broad analytical method that enables qualitative and quantitative examination of metabolite level changes in biological systems in response to various stimuli, pathologies, or treatments. Objectives: This study uses untargeted metabolomics to explore the potential pathways and metabolic patterns associated with hyperthyroidism treatment. Methods: The study consisted of 20 patients newly diagnosed with hyperthyroidism who were assessed at baseline and followed up after starting antithyroid treatment. Two blood samples were taken from each patient, pre (hyperthyroid state) and post-treatment (euthyroid state). Hyperthyroid and euthyroid states were identified based on thyroxine and thyroid-stimulating hormone levels. The metabolic alteration associated with antithyroid therapy was investigated using liquid chromatography- high-resolution mass spectrometry. The untargeted metabolomics data was analyzed using both univariate and multivariate analyses using MetaboAnalyst v5.0. The significant metabolic pattern was identified using the lab standard pipeline, which included molecular annotation in the Human Metabolome Database, LipidMap, LipidBlast, and METLIN. The identified metabolites were examined using pathway and network analyses and linked to cellular metabolism. Results: The results revealed a strong group separation between the pre- and post-hyperthyroidism treatment (Q2 = 0.573, R2 = 0.995), indicating significant differences in the plasma metabolome after treatment. Eighty-three mass ions were significantly dysregulated, of which 53 and 30 characteristics were up and down-regulated in the post-treatment compared to the pre-treatment group, respectively. The medium-chain acylcarnitines, octanoylcarnitine, and decanoylcarnitine, previously found to rise in hyperthyroid patients, were among the down-regulated metabolites, suggesting that their reduction could be a possible biomarker for monitoring euthyroid restoration. Kynurenine is a downregulated tryptophan metabolite, indicating that the enzyme kynurenine 3-hydroxylase, inhibited in hyperthyroidism, is back functioning. L-cystine, a cysteine dimer produced from cysteine oxidation, was among the down-regulated metabolites, and its accumulation is considered a sign of oxidative stress, which was reported to accompany hyperthyroidism; L-cystine levels dropped, this suggests that the plasma level of L-cystine can be used to monitor the progress of euthyroid state restoration. Conclusion: The plasma metabolome of patients with hyperthyroidism before and after treatments revealed differences in the abundance of several small metabolites. Our findings add to our understanding of hyperthyroidism's altered metabolome and associated metabolic processes and shed light on acylcarnitines as a new biomarker for treatment monitoring in conjunction with thyroxine and thyroid-stimulating hormone.


Assuntos
Hipertireoidismo , Tiroxina , Humanos , Cistina , Cisteína , Hipertireoidismo/metabolismo , Metabolômica/métodos , Tireotropina , Biomarcadores
13.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430802

RESUMO

This work investigated the effect of thyroxine on the biogenesis and quality control system of rat liver mitochondria. Chronic administration of thyroxine to experimental animals induced hyperthyroidism, which was confirmed by a severalfold increase in serum-free triiodothyronine and thyroxine concentrations. The uptake of oxygen was found to increase with a decrease in ADP phosphorylation efficiency and respiratory state ratio. Electron microscopy showed 36% of liver mitochondria to be swollen and approximately 18% to have a lysed matrix with a reduced number of cristae. Frequently encountered multilamellar bodies associated with defective mitochondria were located either at the edge of or inside the organelle. The number, area and perimeter of hyperthyroid rat mitochondria increased. Administration of thyroxine increased mitochondrial biogenesis and the quantity of mitochondrial DNA in liver tissue. Mitochondrial dynamics and mitophagy changed significantly. The data obtained indicate that excess thyroid hormones cause a disturbance of the mitochondrial quality control system and ultimately to the incorporation of potentially toxic material in the mitochondrial pool.


Assuntos
Hipertireoidismo , Mitocôndrias Hepáticas , Ratos , Animais , Mitocôndrias Hepáticas/metabolismo , Mitofagia , Tiroxina/metabolismo , Hipertireoidismo/metabolismo , Tri-Iodotironina/metabolismo
14.
Int J Dev Neurosci ; 82(7): 654-663, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35904470

RESUMO

AIM: Aging involves progressive physiological changes, including thyroid dysfunction; thus, changes in plasma thyroid hormone (TH) level may affect neuronal function such as synaptic plasticity and Tau phosphorylation. However, how Tau protein is modulated in hyperthyroidism with aging is not clear. To clarify this issue, long-term potentiation (LTP) and accompanying phosphorylation of Tau protein in different residues were investigated in the hippocampus of young and old rats with experimentally induced hyperthyroidism. MATERIALS AND METHODS: The study was performed in vivo under urethane anesthesia on 2- and 12-month-old Wistar albino male rats. Field potentials, composed of a field of excitatory postsynaptic potential (fEPSP) and a population spike (PS), occurring in the hippocampal dentate gyrus region, were recorded by applying high-frequency stimulation (HFS) to the perforant pathway (100 Hz, four times at 5-min intervals) to induce LTP. Total-Tau and phosphorylated-Tau were measured in HFS-induced hippocampus by using western blotting. RESULTS: The TH suppressed hippocampal somatic LTP (PS) was suppressed with aging, and treatment improved this suppression in aged rats without any changes in synaptic LTP (fEPSP). The phosphorylation of Tau at Ser202/Thr205 and Thr231 residues was increased in aged control rats. Treatment of aged rats with l-thyroxine reduced the phosphorylation of Tau at these residues to the young control condition. CONCLUSION: Impaired LTP that occurs with aging may be among the underlying causes of dementia in relatively older ages, and l-thyroxine treatment restores this impaired LTP. In addition, the phosphorylation level of Tau epitopes known to play a role in the pathogenesis of Alzheimer's disease may support a critical role in the modulation of synaptic plasticity in hyperthyroidism.


Assuntos
Hipertireoidismo , Proteínas tau , Ratos , Animais , Proteínas tau/metabolismo , Ratos Wistar , Giro Denteado , Tiroxina/farmacologia , Hipertireoidismo/metabolismo
15.
Adipocyte ; 11(1): 389-400, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35894647

RESUMO

Thyroid hormones (TH), adiponectin and brown adipose tissue (BAT) are regulators of energy homoeostasis. Influence of BAT activity on the relationship between TH and adiponectin remains unexplored. The aim of the study was to identify the relationship between TH and adiponectin and to clarify the impact of active BAT on the metabolic effects of adiponectin before and after the correction of thyrotoxicosis. Twenty-one patients with newly diagnosed hyperthyroidism from Graves' disease were recruited. A titration dosing regimen of thionamide anti-thyroid drug (ATD) was used to establish euthyroidism over 12-24 weeks. Anthropometric, biochemical and adipocytokine parameters were measured before and after control of hyperthyroidism. BAT activity was quantified by fusion 18 F-fluorodeoxyglucose (18 F-FDG) PET/MR imaging, and patients were grouped based on BAT status. Plasma adiponectin level was significantly increased following correction of hyperthyroidism in the overall sample. Free thyroxine (FT4) was also identified as a predictor of adiponectin level in thyroid dysfunction. However, significant changes in adiponectin level and correlations involving adiponectin were absent in BAT-positive patients but maintained in BAT-negative patients. BAT activity diminishes the correlative relationship with body composition and abolishes TH and adiponectin relationships when transitioning from a hyperthyroid to euthyroid state.


Assuntos
Doença de Graves , Hipertireoidismo , Adiponectina/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Fluordesoxiglucose F18/metabolismo , Fluordesoxiglucose F18/uso terapêutico , Doença de Graves/tratamento farmacológico , Doença de Graves/metabolismo , Humanos , Hipertireoidismo/tratamento farmacológico , Hipertireoidismo/metabolismo , Hormônios Tireóideos/metabolismo
16.
Georgian Med News ; (323): 116-122, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35271482

RESUMO

Hyper- and hypothyroidism are two typical clinical conditions that can cause a variety of metabolic changes, including impaired sulfur-containing amino acids metabolism, increased risk of cardiovascular disease, renal dysfunction, and renal failure. Hypothyroidism has been shown to be associated with increased serum creatinine, decreased glomerular filtration rate, and an increased risk of chronic kidney disease. At the same time, the pathophysiological mechanisms of renal dysfunction induced by excessive iodothyronine secretion are poorly understood. The aim of the study was to establish the reorganization of the kidney structural components under the conditions of experimental hyperhomocysteinemia (HHCy), hyper- and hypothyroidism and their combined effects. Thiolactone HHCy was simulated by administering to animals exogenous homocysteine ​​(HC) in the form of thiolactone at a dose of 100 mg/kg body weight once a day for 28 days. Hyperthyroidism was simulated by daily administration of L-thyroxine at a dose of 200 µg/kg on 21st day, hypothyroidism - daily administration of mercazolyl at a dose of 10 mg/kg on 21st day. Separate groups of animals were administered L-thyroxine and mercazolyl in parallel with HC. A significant degree of dystrophic changes in the structural components of the kidneys under conditions of simulated hyperthyroidism and HHCy was established. Signs of vascular insufficiency in the kidneys were detected. Deformation of renal corpuscles, single focal thickenings and destruction of the outer layer of the renal corpuscle capsule were observed, there was a narrowing of the urinary space in the capsule. Microscopic study of the kidneys of animals under the combined effects of hypothyroidism and HHCy revealed the most significant destructive-degenerative changes in the filtration and reabsorption apparatus of the organ on the background of significant vascular disorders. An increase in number of glomeruli and a decrease of the urinary space of the Shumlyansky-Bowman's capsule were observed in the renal corpuscles. Podocytes underwent significant destructive changes. Damage to the epithelium in the system of tubules was manifested by cell hypertrophy. Under the conditions of simulated HHCy, hyper- and hypothyroidism, and especially with their combined effect, there are significant disorders of the vascular bed with remodeling of the vascular wall. On the background of hemodynamic disorders, there are significant destructive and dystrophic changes in the epitheliocytes of the renal corpuscles of the Shumlyansky-Bowman's capsule, the proximal and distal tubules of the nephron, the filtration and reabsorption apparatus of the nephrons of the organ.


Assuntos
Hiper-Homocisteinemia , Hipertireoidismo , Hipotireoidismo , Animais , Hiper-Homocisteinemia/metabolismo , Hipertireoidismo/metabolismo , Rim/metabolismo , Néfrons
17.
Sci Rep ; 12(1): 3693, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35256693

RESUMO

Both hyperthyroidism and elevated plasma branched chain amino acids (BCAA) are associated with insulin resistance. BCAA utilization and clearance relative to thyroid status changes remains unclear. We investigate amino acids changes, specifically BCAA, during the transition from hyperthyroidism to euthyroidism, and the impact of active brown adipose tissue (BAT) on the metabolic effects of BCAA. Newly diagnosed Graves' disease participants were recruited. Hyperthyroidism was treated via a titration dosing regimen of thionamide anti-thyroid drug to establish euthyroidism over 12-24 weeks. All underwent energy expenditure (EE) measurement within a chamber calorimeter, 18F-fluorodeoxyglucose (18F-FDG) positron-emission tomography/magnetic resonance (PET/MR) imaging and plasma amino acids measurement during hyperthyroidism and euthyroidism. PET BAT maximum standardized uptake value (SUVmax), SUVmean and MR supraclavicular fat fraction (FF) quantified BAT activity. Twenty-two patients completed the study. Plasma BCAA level was significantly reduced in BAT-positive but not in BAT-negative patients during the transition from hyperthyroidism to euthyroidism. Plasma valine but not leucine and isoleucine correlated positively with insulin and HOMA-IR in hyperthyroidism. Plasma valine, leucine and isoleucine correlated with insulin and HOMA-IR in euthyroidism. Plasma valine correlated with insulin and HOMA-IR in BAT-negative but not in BAT-positive participants in both hyperthyroid and euthyroid state. However, the change (i.e. decrease) in plasma valine concentration from hyperthyroid to euthyroid state was affected by BAT-status. BAT utilizes and promotes BCAA plasma clearance from hyperthyroid to euthyroid state. Active BAT can potentially reduce circulating BCAA and may help to ameliorate insulin resistance and improve metabolic health.Clinical trial registration: The trial was registered at clinicaltrials.gov as NCT03064542.


Assuntos
Hipertireoidismo , Resistência à Insulina , Tecido Adiposo Marrom/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Fluordesoxiglucose F18/metabolismo , Humanos , Hipertireoidismo/metabolismo , Insulina/metabolismo , Isoleucina/metabolismo , Leucina/metabolismo , Valina/metabolismo
18.
Arch Razi Inst ; 77(4): 1481-1489, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36883144

RESUMO

Hyperthyroidism is a health problem characterized by an overactive thyroid gland, resulting in extra triiodothyronine (T3) and thyroxine (T4) production, as well as a decrease in thyroid-stimulating hormone (TSH). The oxidative stress indicators in hyperthyroid patients and the relationship with impaired metabolism of lipid are still controversial, especially in menopausal women suffering from a lack of ovulation hormones. In this study, blood samples were withdrawn from 120 subjects, including healthy premenopausal (n=30) and postmenopausal women (n=30) as control groups (G1 and G2), as well as 30 hyperthyroid women in each group of premenopausal and postmenopausal patient groups (G3 and G4). The levels of T3, T4, and TSH, blood pressure, and lipid profiles, such as triglyceride, total cholesterol (TC), high-density lipoprotein, and low-density lipoprotein, superoxide dismutase (SOD) activity, malondialdehyde (MDA), and advanced oxidation protein products (AOPP) in the two healthy control groups and patient groups with hyperthyroidism were measured. In addition, serum progesterone levels were measured by the Bio-Merieux kit France, according to the manufacturer's instructions. The results revealed a significant decrease in SOD activity in the postmenopausal group, as compared to that in premenopausal women and control groups. Hyperthyroidism groups demonstrated a significant increase in MDA and AOPP levels, compared to control groups. Patient groups reported a decreased level of progesterone, in comparison with control groups. Moreover, there was a significant increase in T3 and T4 in patient groups (G3 and G4), compared to that in control groups (G1 and G2). There was a significant increase in systolic and diastolic blood pressure in menopausal hyperthyroidism (G4), compared to that in other groups. The TC decreased significantly in G3 and G4, compared to that in both control groups (P<0.05); nonetheless, there was no significant difference between patient groups (G3 and G4), as well as between control groups (G1 and G2). The study suggested that hyperthyroidism causes an increase in oxidative stress, which negatively affects the antioxidant system and drops levels of progesterone in both premenopausal and postmenopausal female patients. Therefore, low levels of progesterone are linked with hyperthyroidism, leading to aggravating symptoms of the disease.


Assuntos
Hipertireoidismo , Menopausa , Feminino , Hipertireoidismo/sangue , Hipertireoidismo/complicações , Hipertireoidismo/metabolismo , Iraque/epidemiologia , Lipídeos , Menopausa/sangue , Menopausa/metabolismo , Progesterona/sangue , Superóxido Dismutase/sangue , Pré-Menopausa/sangue , Pré-Menopausa/metabolismo , Pós-Menopausa/sangue , Pós-Menopausa/metabolismo , Estresse Oxidativo
19.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36613632

RESUMO

Echinacea purpurea (L.) Moench (EP) is a well-known botanical supplement with antioxidant characteristics. However, the effects of EP on oxidative stress induced by hyperthyroidism have not yet been studied. This study was designed to evaluate the antioxidative effect of ethanolic Echinacea Purpurea (EEP) on hyperthyroidism-induced oxidative stress mice using an integrated strategy combining transcriptomics with network pharmacology analysis. Firstly, a hyperthyroidism mice model was induced via thyroxine (160 mg/kg) and EEP (1, 2, or 4 g/kg) once daily for 2 weeks. Body weight, thyroid-stimulating hormones, and oxidative stress markers were tested. Secondly, EEP regulating the potential genes at transcript level were analyzed. Thirdly, a network pharmacology based on the constituents of EEP identified using UPLC-Q-TOF-MS analysis was adopted. Finally, a joint analysis was performed to identify the key pathway. The results showed that EEP significantly changed the thyroid-stimulating hormones and oxidative stress markers. Meanwhile, RT-qPCR and Western Blotting demonstrated that the mechanism of the antioxidant effect of EEP reversed the mRNA expression of EHHADH, HMGCR and SLC27A2 and the protein expression of FABP and HMGCR in AMPK and PPAR signaling pathways. This study integrates transcriptomics with network pharmacology to reveal the mechanism of ameliorative effect of EEP on hyperthyroidism-induced oxidative stress.


Assuntos
Echinacea , Hipertireoidismo , Estresse Oxidativo , Extratos Vegetais , Animais , Camundongos , Antioxidantes/farmacologia , Echinacea/química , Hormônios , Farmacologia em Rede , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Extratos Vegetais/farmacologia , Transdução de Sinais , Transcriptoma , Hipertireoidismo/complicações , Hipertireoidismo/metabolismo , Adenilato Quinase/metabolismo
20.
Life Sci ; 295: 120086, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34710445

RESUMO

AIMS: The objective of the present study was to investigate the effect of melatonin and L-thyroxine (T4) on the expression of various receptors, and some metabolic, reproductive, and gonadotropic hormones in letrozole-induced polycystic ovary syndrome (PCOS) in rats. MATERIAL AND METHODS: Assessment of gravimetric, hormonal profile and thyroid histology and relative expression of melatonin receptors (MT1, MT2) and estrogen receptor α (Erα) in thyroid and ovary, and type II iodothyronine deiodinase (Dio2) and thyroid hormone receptor α (TRα) in the ovary were performed using standard protocols. KEY FINDINGS: A significant increase in thyroid follicles numbers was noted in the hyperthyroid rat. T4 treatment to PCOS showed the expected increment in the circulating level of triiodothyronine (T3) and T4. Melatonin and T4 treatment of PCOS rats resulted in a significant decrease in the circulating level of T3 and T4. Hyperthyroid rats showed a decrement in plasma melatonin levels. However, T4 treatment to PCOS rats showed increased circulating melatonin levels, and a decrease in the circulating level of gonadotropins (LH and FSH), and testosterone. Melatonin treatment to PCOS-hyperthyroid rats resulted in the normal expression of ovarian and thyroid MT1 and ERα, receptors, which had been altered in PCOS and hyperthyroid rats, without any significant change in the MT2 receptor. SIGNIFICANCE: The present findings suggest a fine interplay and cross-talk via melatonin and its two receptors with ERα, TRα, and Dio2in thyroid and ovarian tissue during PCOS and hyperthyroidism pathogenicity.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Síndrome do Ovário Policístico/patologia , Receptores dos Hormônios Tireóideos/metabolismo , Animais , Modelos Animais de Doenças , Receptor alfa de Estrogênio/fisiologia , Feminino , Expressão Gênica/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Gonadotropinas/metabolismo , Hipertireoidismo/metabolismo , Letrozol/farmacologia , Melatonina/metabolismo , Melatonina/farmacologia , Ovário/metabolismo , Ovário/fisiologia , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Ratos , Ratos Wistar , Receptores dos Hormônios Tireóideos/fisiologia , Testosterona/metabolismo , Glândula Tireoide/efeitos dos fármacos , Hormônios Tireóideos/metabolismo , Tiroxina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...